Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis.

نویسندگان

  • N Sathyamoorthy
  • K Takayama
چکیده

We have isolated and purified to homogeneity an alpha,alpha'-trehalose 6-monomycolate:alpha,alpha'-trehalose mycolyltransferase (trehalose mycolyltransferase) from Mycobacterium smegmatis that catalyzes the exchange of a mycolyl group between trehalose, trehalose 6-monomycolate (TM), and trehalose 6,6'-dimycolate (TD). This enzyme was prominent in M. smegmatis and it catalyzed the following reactions. TM + [14C]trehalose in equilibrium [14C]TM + trehalose [14C]TM + TM in equilibrium [14C]TD + trehalose This enzyme was purified by (i) ammonium sulfate fractionation, (ii) QAE-Sephadex A-50 column chromatography, (iii) gel filtration on a Sephadex G-75 column, and (iv) SP-Sephadex C-50 column chromatography. The purified protein yielded a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000. This enzyme was a glycoprotein, had no cofactor requirement, and was highly specific for alpha,alpha'-trehalose as the mycolate acceptor. It was less specific for the acyl donor group since the palmitoyl group in trehalose 6-monopalmitate was easily exchangeable. There was no TM acylhydrolase activity in the purified enzyme, suggesting that it is probably associated with the anabolic pathway of mycolic acid metabolism. We postulate the formation of a mycolyl-enzyme intermediate in this reaction. Such an intermediate could play a central role in the transfer of mycolic acid to form the prominent cell wall components of mycobacterial TD and possibly murein-arabinogalactan-mycolate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and Characterization of a Novel Thermostable and Acid Stable α-Amylase from Bacillus Sp. Iranian S1

This study reports the purification and biochemical characterization of thermostable and acidic-pH-stable α-amylase from Bacillus sp. Iranian S1 isolated from the desert soil (Gandom-e-Beryan in Lut desert, Iran). Amylase production was found to be growth associated. Maximum enzyme production was in exponential phase with activity 2.93 U ml-1 at 50°C and pH 5. The enzyme was purified by isoprop...

متن کامل

Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study...

متن کامل

A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms.

Mycolic acids are major and specific constituents of the cell envelope of Corynebacterineae, a suborder of bacterial species including several important human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, or Corynebacterium diphtheriae. These long-chain fatty acids are involved in the unusual architecture and impermeability of the cell envelope of these bacteria. The conde...

متن کامل

Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria

Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consi...

متن کامل

Phosphorylation of enoyl-ACP reductase InhA impacts mycobacterial growth and survival

InhA, the primary target for the firstline anti-tuberculosis drug isoniazid, is a key enzyme of the Fatty Acid Synthase-II system involved in mycolic acid biosynthesis in Mycobacterium tuberculosis. In the present study, we show that InhA is a substrate for mycobacterial serine/threonine protein kinases. Using a novel approach to validate phosphorylation of a substrate by multiple kinases in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 28  شماره 

صفحات  -

تاریخ انتشار 1987